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Receiver-Operating Characteristic Analysis for Evaluating
Diagnostic Tests and Predictive Models

Kelly H. Zou, PhD; A. James O’Malley, PhD; Laura Mauri, MD, MSc

Receiver—operating characteristic (ROC) analysis was
originally developed during World War II to analyze
classification accuracy in differentiating signal from noise in
radar detection.! Recently, the methodology has been adapted
to several clinical areas heavily dependent on screening and
diagnostic tests,>* in particular, laboratory testing,> epidemi-
ology,° radiology,’-° and bioinformatics.'®

ROC analysis is a useful tool for evaluating the perfor-
mance of diagnostic tests and more generally for evaluating
the accuracy of a statistical model (eg, logistic regression,
linear discriminant analysis) that classifies subjects into 1 of
2 categories, diseased or nondiseased. Its function as a simple
graphical tool for displaying the accuracy of a medical
diagnostic test is one of the most well-known applications of
ROC curve analysis. In Circulation from January 1, 1995,
through December 5, 2005, 309 articles were published with
the key phrase “receiver operating characteristic.” In cardiol-
ogy, diagnostic testing plays a fundamental role in clinical
practice (eg, serum markers of myocardial necrosis, cardiac
imaging tests). Predictive modeling to estimate expected
outcomes such as mortality or adverse cardiac events based
on patient risk characteristics also is common in cardiovas-
cular research. ROC analysis is a useful tool in both of these
situations.

In this article, we begin by reviewing the measures of
accuracy—sensitivity, specificity, and area under the curve
(AUC)—that use the ROC curve. We also illustrate how these
measures can be applied using the evaluation of a hypothet-
ical new diagnostic test as an example.

Diagnostic Test and Predictive Model
A diagnostic classification test typically yields binary, ordi-
nal, or continuous outcomes. The simplest type, binary
outcomes, arises from a screening test indicating whether the
patient is nondiseased (Dx=0) or diseased (Dx=1). The
screening test indicates whether the patient is likely to be
diseased or not. When >2 categories are used, the test data
can be on an ordinal rating scale; eg, echocardiographic
grading of mitral regurgitation uses a 5-point ordinal (0, 1+,
2+, 3+, 4+) scale for disease severity. When a particular
cutoff level or threshold is of particular interest, an ordinal
scale may be dichotomized (eg, mitral regurgitation =2+ and

>2+), in which case methods for binary outcomes can be
used.” Test data such as serum markers (brain natriuretic
peptide'!) or physiological markers (coronary lumen diame-
ter,'? peak oxygen consumption'?) also may be acquired on a
continuous scale.

Gold Standard
To estimate classification accuracy using standard ROC
methods, the disease status for each patient is measured
without error. The true disease status often is referred to as
the gold standard. The gold standard may be available from
clinical follow-up, surgical verification, and autopsy; in some
cases, it is adjudicated by a committee of experts.

In selection of the gold standard, 2 potential problems
arise: verification bias and measurement error. Verification
bias results when the accuracy of a test is evaluated only
among those with known disease status.'4-1© Measurement
error may result when a true gold standard is absent or an
imperfect standard is used for comparison.!”-18

Sensitivity and Specificity

The fundamental measures of diagnostic accuracy are sensi-
tivity (ie, true positive rate) and specificity (ie, true negative
rate). For now, suppose the outcome of a medical test results
in a continuous-scale measurement. Let t be a threshold
(sometimes called a cutoff) value of the diagnostic test used
to classify subjects. Assume that subjects with diagnostic test
values less than or equal to t are classified as nondiseased and
that subjects with diagnostic test values greater than t are
classified as diseased, and let m and n denote the number of
subjects in each group. Once the gold standard for each
subject is determined, a 2X2 contingency table containing the
counts of the 4 combinations of classification and true disease
status may be formed; the cells consist of the number of true
negatives, false negatives, false positives, and true positives
(the Table).

The accuracy of such binary-valued diagnostic tests is
assessed in terms of the probability that the test correctly
classifies a nondiseased subject as negative, namely the
specificity (also known as the true negative rate), and the
probability that the test correctly classifies a diseased subject
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Contingency Table of Counts Based on the Diagnostic Test and Gold Standard

GS
Dx Nondiseased (GS=0)  Diseased (GS=1) Total
Negative (Dx=0) A=true negatives B=false negatives A+B=test negatives
Positive (Dx=1) C=false positives D=true positives C-+D=test positives
Total A+C=nondiseased B+D=diseased A+B+C-+D=total sample size

GS indicates gold standard; DX, diagnostic test. Specificity=true negative rate=A/(A+C).
Sensitivity=true positive rate=D/(B+D). Negative predictive value=A/(A+B). Positive predictive
value=D/(C+D). Disease prevalence=(B+D)/(A+B+C+D).

as positive, namely the sensitivity (also known as the true
positive rate) (Figure 1).

When evaluating a continuous-scale diagnostic test, we
need to account for the changes of specificity and sensitivity
when the test threshold t varies. One may wish to report the
sum of sensitivity and specificity at the optimal threshold
(discussed later in greater detail). However, because the
optimal value of t may not be relevant to a particular
application, it can be helpful to plot sensitivity and specificity
over a range of values of interest, as is done with an ROC
curve. This inherent tradeoff between sensitivity and speci-
ficity also can be demonstrated by varying the choice of
threshold.

ROC Analysis

An ROC curve is a plot of sensitivity on the y axis against
(1—specificity) on the x axis for varying values of the
threshold t. The 45° diagonal line connecting (0,0) to (1,1) is
the ROC curve corresponding to random chance. The ROC
curve for the gold standard is the line connecting (0,0) to (0,1)
and (0,1) to (1,1). Generally, ROC curves lie between these 2
extremes. The area under the ROC curve is a summary
measure that essentially averages diagnostic accuracy across
the spectrum of test values Figure 2).

Estimation Methods

Nonparametric Methods
The empirical method for creating an ROC plot involves
plotting pairs of sensitivity versus (1—specificity) at all

possible values for the decision threshold when sensitivity
and specificity are calculated nonparametrically. An advan-
tage of this method is that no structural assumptions are made
about the form of the plot, and the underlying distributions of
the outcomes for the 2 groups do not need to be specified.!”
However, the empirical ROC curve is not smooth (Figure 3).
When the true ROC curve is a smooth function, the precision
of statistical inferences based on the empirical ROC curve is
reduced relative to a model-based estimator (at least when the
model is correctly specified). Analogous to regression, the
specification of a model for the ROC curve enables informa-
tion to be pooled over all values when estimating sensitivity
or specificity at any 1 point. Smooth nonparametric ROC
curves may be derived from estimates of density or distribu-
tion functions of the test distributions.?®

Parametric Methods

As an alternative to the nonparametric approach, parametric
models such as the binormal model may be assumed (Figure
3).21-25 The binormal model assumes that both measurements
have 2 independent normal distributions with different means
and SDs. In our example, the distributions have a mean of 0
and an SD of 1 for the nondiseased population and a mean of
1.87 and an SD of 1.5 for the diseased population. These
models have the further advantage of allowing easy incorpo-
ration of covariates into the model. By incorporating an
optimal transformation, typically a log transformation to
normal distributions, the estimated ROC curve may yield a
better fit.26-28
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Figure 1. Probability density functions of a
hypothetical diagnostic test that gives values
on the real line. The density of the diagnostic
test is plotted for each of 2 populations,
nondiseased (Non-D) and diseased (D),
assumed to follow the binormal model with a
mixture of N(0,1) and N(1.87,1.5%), respec-
tively. The specificity of the diagnostic test is
represented as the shaded area under the
nondiseased distribution (A) above the arbi-
trary threshold t=1. Sensitivity is represented
as the shaded area under the diseased dis-
tribution (B) below the same threshold of 1.
For example, when the threshold value t=1,
Sensitivity (sensitivity, specificity)=(0.72, 0.84). When
the test is dichotomized (eg, positive if test
value is greater than the threshold), both the
sensitivity and specificity vary accordingly,
with lower sensitivity and higher specificity
as the threshold increases. In practice, a log
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— transformation is often applied to positive-

5 6 7 8 9 valued marker data to obtain symmetric
density functions like those depicted
above.'?
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Figure 2. Three hypothetical ROC curves representing the diag-
nostic accuracy of the gold standard (lines A; AUC=1) on the
upper and left axes in the unit square, a typical ROC curve
(curve B; AUC=0.85), and a diagonal line corresponding to ran-
dom chance (line C; AUC=0.5). As diagnostic test accuracy
improves, the ROC curve moves toward A, and the AUC
approaches 1.

Summary Measures

Confidence Intervals

A 95% confidence interval for the sensitivity at a given
specificity, or vice versa, may be constructed using the
bootstrap?>3° or, for a bayesian model, using Markov-chain
Monte Carlo simulation.' Alternatively, sample analytical
approximations may be used instead of these computationally
intensive numerical procedures.

Area Under the Curve

The AUC is an overall summary of diagnostic accuracy. AUC
equals 0.5 when the ROC curve corresponds to random
chance and 1.0 for perfect accuracy. On rare occasions, the
estimated AUC is <0.5, indicating that the test does worse
than chance.!

For continuous diagnostic data, the nonparametric estimate
of AUC is the Wilcoxon rank-sum test, namely the proportion
of all possible pairs of nondiseased and diseased test subjects
for which the diseased result is higher than the nondiseased
one plus half the proportion of ties. Under the binormal
model, the AUC is a simple function of the mean and
variance.?!-32

Comparison of AUC Curves

An important problem concerns the comparison of 2 AUCs
derived from 2 diagnostic tests administered on the same set
of patients. Correlated U statistics may be compared.
Pearson correlation coefficients were used to estimate the
correlation of the 2 AUCs.3* A family of nonparametric
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Figure 3. ROC curves derived from the example in Figure 1
using nonparametric and parametric estimation methods. The
binormal model assumes a mixture distributions of N(0,1) and
N(1.87,1.52), respectively. The nonparametric method yields a
jagged curve; the parametric method yields a smoothed func-
tion. The AUC is 0.89. The (sensitivity, specificity) values corre-
spond to the threshold values of 1 and 2, respectively. When
the threshold value equals 1, (sensitivity, specificity)=(0.72,
0.84). In comparison, when the threshold value equals 2, (sensi-
tivity, specificity)=(0.47, 0.98). At the optimal threshold of
t=0.75, sensitivity=specificity=0.77.

comparisons based on a weighted average of sensitivities may
be conducted.?

Partial Area

The area under the ROC curve is a simple and convenient
overall measure of diagnostic test accuracy. However, it gives
equal weight to the full range of threshold values. When the
ROC curves intersect, the AUC may obscure the fact that 1
test does better for 1 part of the scale (possibly for certain
types of patients) whereas the other test does better over the
remainder of the scale.3>3¢ The partial area may be useful for
the range of specificity (or sensitivity) of clinical importance
(ie, between 90% and 100% specificity). However, partial
area may be more difficult to estimate and compare on the
basis of numerical integration methods; thus, full area is used
more frequently in practice.?’

Optimal Threshold

One criterion for evaluating the optimal threshold of a test
is to maximize the sum of sensitivity and specificity. This
is equivalent to maximizing the difference between the
sensitivity of the test and the sensitivity that the test would
have if it did no better than random chance.® For example,
if both sensitivity and specificity are of importance in our
example binormal model, the optimal threshold of t would
be 0.75, where these 2 accuracy measures equal sensitivity
and specificity equal 0.77 (Figure 3).
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Discussion

ROC analysis is a valuable tool to evaluate diagnostic tests
and predictive models. It may be used to assess accuracy
quantitatively or to compare accuracy between tests or
predictive models. In clinical practice, continuous measures
are frequently converted to dichotomous tests. ROC analysis
can be used to select the optimal threshold under a variety of
clinical circumstances, balancing the inherent tradeoffs that
exist between sensitivity and sensitivity. Several other spe-
cific applications of ROC analysis such as sample size
determination33-4> and meta-analysis*>#* have been applied
to clinical research. These can be derived from the funda-
mental principles discussed here.
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